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Abstract
Scientists aim to extract simplicity from observations of the complex world. An important component of

this process is the exploration of data in search of trends. In practice, however, this tends to be more of an art
than a science. Among all trends existing in the natural world, one-dimensional trends, often called sequences,
are of particular interest as they provide insights into simple phenomena. However, some are challenging to
detect as they may be expressed in complex manners. We present the Sequencer, an algorithm designed to
generically identify the main trend in a dataset. It does so by constructing graphs describing the similarities
between pairs of observations, computed with a set of metrics and scales. Using the fact that continuous trends
lead to more elongated graphs, the algorithm can identify which aspects of the data are relevant in establishing a
global sequence. Such an approach can be used beyond the proposed algorithm and can optimize the parameters
of any dimensionality reduction technique. We demonstrate the power of the Sequencer using real-world data
from astronomy, geology as well as images from the natural world. We show that, in a number of cases, it
outperforms the popular t-SNE and UMAP dimensionality reduction techniques. This approach to exploratory
data analysis, which does not rely on training nor tuning any parameter, has the potential to enable discoveries
in a wide range of scientific domains.
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1. Introduction

“One of the principal objects of theoretical research is to
find the point of view from which the subject appears in the
greatest simplicity”, wrote Josiah Willard Gibbs in 1881. The
early phase of this process often involves exploratory data
analysis, i.e. a search for patterns in a dataset without the
benefit of guidance from theory. Unfortunately, data can ap-
pear complex and might not allow underlying trends to be re-
vealed straightforwardly. Additional challenges include high
dimensionality, the presence of noise, and ever-growing data
volumes, all of which prevent efficient visualization of the
data and require mathematically guided exploration.

Dimensionality reduction techniques, from Principal Com-
ponent Analysis (PCA; Pearson 1901) to the more recent t-
Distributed Stochastic Neighbor Embedding (t-SNE; van der
Maaten & Hinton 2008) and Uniform Manifold Approxi-
mation and Projection for Dimension Reduction (UMAP;
McInnes et al. 2018), provide powerful ways to address some
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of these limitations (Van Der Maaten et al. 2009; Lee & Ver-
leysen 2010; Venna et al. 2010). However, scientific work
does not end once dimensionality reduction algorithms have
been applied to a dataset. Rather, it only begins. Extract-
ing simplicity through the identification of interesting trends
critically relies on user input and judgement. Domain knowl-
edge informs important decisions: the choice of coordinates,
the scale to focus on, the metric to use to compare objects,
etc. In addition, when the size or dimensionality of data ob-
jects is large, such is the case for images, spectra or time
series, analyses are typically performed on extracted features
or summary statistics rather than on measured values or pix-
els. This decision is critical in the exploration process since a
poor choice of summary statistics or relevant features might
prevent the detection of interesting trends in the data. Finally,
most dimensionality reduction algorithms depend on param-
eters, and changing them can dramatically affect the result-
ing representation (Wattenberg et al. 2016; McInnes et al.
2018; Baron 2019). Thus, a crucial part of the scientific ex-
ploration process is devoted to understanding which observ-
ables or summary statistics to investigate, which method to
pick, and which parameter values to use, in order to obtain
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the most interesting results. In many cases, we lack a well-
defined metric to guide these decisions (e.g., Lee & Verley-
sen 2010; Zhang et al. 2011; Baron 2019). Without theoreti-
cal guidance, trial and error is usually the adopted strategy. Is
it possible to perform these tasks in a way that will automat-
ically and robustly identify the existence of a simple trend in
an apparently complex dataset? Is it possible to operate di-
rectly on the raw data, without specifying which observables
or summary statistics to use?

When trying to understand a dataset, one attempts to ex-
tract meaning by building a generic and concise represen-
tation of it. For the representation to be generic, it should
be invariant to coordinates transformation and deformations.
Meaningful trends are topological properties of the data, i.e.
aspects of the data manifold that are not affected by de-
formation (Carlsson 2009). For example, clusters can of-
ten be defined and interpreted, irrespective of the choice of
coordinates. Many cluster finding algorithms are available
and widely used (e.g., Ward 1963; MacQueen 1967; Yizong
Cheng 1995; Ester et al. 1996; Rodriguez & Laio 2014).
However, in many cases, we expect observed phenomena to
exhibit a continuous change in their properties as a function
of a leading, possibly unknown, driving parameter. In other
words, we often expect to find sequences – they abound in the
natural world and, especially, in scientific measurements. Al-
though they are essentially one-dimensional trends, they are
often challenging to find as they can be expressed in complex
manners.

In this paper we present an algorithm to automatically de-
tect sequences in datasets. It uses information about the
shape of the graph describing the similarities between the
objects and exploits the fact that sequences give rise to elon-
gated graphs. Following this approach, it is possible to con-
sider different representations of the data and, for each of
them, quantify the degree to which a continuous trend ex-
ists. We show that this method can also be used to optimize
some of the parameters or certain arbitrary choices involved
in dimensionality reduction techniques aimed at detecting se-
quences. Importantly, this search can be performed directly
on the pixels or measured values, as opposed to user-defined
observables or restrictive summary statistics. Therefore, our
approach enables a more generic search for continuous trends
in arbitrary datasets.

2. The signature of a continuous trend

Data acquisition often provides us with a collection of ob-
jects that are not necessarily ordered in a meaningful man-
ner. If these objects follow an underlying trend due to the
variation of an intrinsic parameter, it should be possible to
order the set meaningfully. If the variation of this parame-
ter leads to a continuous change of observables, the ordered
set should minimize the cumulative differences between con-

secutive objects. Finding the ordering leading to such mini-
mization is therefore expected to reveal the leading trend in
a dataset. By doing so, we face several challenges: which
aspects of the data should be considered? Which pixels carry
relevant information? How to meaningfully define similari-
ties between them?

To address these questions, we propose the following ap-
proach: let us consider a collection of N objects and let us
first assume that we have a useful metric allowing us to esti-
mate the similarity (or equivalently a distance) between each
pair of objects. The corresponding adjacency matrix repre-
sents a fully-connected graph, where each object in the orig-
inal dataset is represented by a node in the graph, and the
weights of the edges that connect the nodes represent the dis-
tances between the objects. This structure encodes all the
possible trajectories within the dataset.

Within this set, some trajectories are of special interest:
those that connect all the nodes and minimize the total dis-
tance accumulated along them1. We can find such a trajectory
by finding the minimum spanning tree (MST) of our graph,
the subset of the edges in a fully-connected graph that con-
nects all the nodes together, without any cycles, and with the
minimum possible total edge weight (e.g., Kruskal 1956). If
each edge in the original fully-connected graph has a dis-
tinct weight, then the minimum spanning tree is unique. The
shape of the resulting tree carries valuable information on the
topological properties of the dataset. In particular, it can be
used as an indicator of the degree to which a sequence exists
in the dataset. In Figure 1 we show examples of minimum
spanning trees for three scenarios. The left panel shows the
minimum spanning tree of a random graph. The middle panel
shows the minimum spanning tree of a dataset with a noisy
sequence, and the right panel shows the minimum spanning
tree of a dataset with a perfect sequence. The existence of a
continuous trend leads to a more elongated minimum span-
ning tree. Therefore, the minimum spanning tree elongation
can characterize the existence of a trend underlying a collec-
tion of objects.

When doing exploratory data analysis, one typically does
not know a-priori how to meaningfully “look” at the data.
Which similarity measure will be informative? On which
scales will we find relevant information? Interestingly, we
can address these questions by simply considering, in each
case, the shape of the corresponding minimum spanning tree.
In other words, we can automatically find the parameters
that are most sensitive to the existence of a simple trend in
the dataset. For a diverse enough set of distance metrics

1 This is not equivalent to solving the Traveling Salesman’s Problem. The
Traveling Salesman’s Problem is more specific and aims at finding a tra-
jectory which starts and ends at the same node and visits all the others only
once.
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MST of random graph
 elongation = 8

dataset with a noisy sequence
 elongation = 27

dataset with a perfect sequence
 elongation = 50

Figure 1. Minimum spanning trees for three sets of 50 objects for which the similarities range from random (left) to continuous (right). Each
panel shows the corresponding elongation parameter η (Eq. 3) which can be used to characterize the degree to which a continuous trend is
detected.

and scales, this automatic process has the capacity to reveal
trends in a generic manner. These trends can be intrinsic to
the objects in the sample and/or extrinsic and driven by ob-
servational effects.

3. Algorithm description

We now provide a description of the Sequencer algorithm
following the key principles outlined in the previous section.
Our goal is to order a collection of Nobj objects with Npix

values. We will describe each object as Xj
i , with j = 1

to Nobj and i = 1 to Npix. To characterize and extract a
sequence underlying such a collection of objects, we proceed
in two steps:

1. For a list of metrics and scales, we compute the cor-
responding graphs describing the dataset and quantify
the elongation of their minimum spanning trees;

2. We aggregate the results to form a new graph summa-
rizing the relevant information and extract an ordered
list of objects from it.

As we will demonstrate, this can reveal the trend character-
izing the leading variation among the objects in many cases.
Such a trend is often meaningful.

3.1. Distance metrics & scales

As described above, we can achieve a meaningful order-
ing of the dataset by minimizing the similarity or distance
between adjacent objects. Doing so requires the choice of
a distance measure. In order to be generic, we include sev-
eral commonly-used metrics. This will allow the algorithm
to consider various aspects of the data and its features. Simi-
larly, we consider a list of scales on which the relevant infor-
mation can be distributed.

By default, we use the following metrics: (i) the Eu-
clidean Distance, (ii) the Kullback-Leibler Divergence (KL

Divergence; Kullback & Leibler 1951), (iii) the Monge-
Wasserstein or Earth Mover Distance (EMD; Rubner et al.
1998), and (iv) the Energy Distance (Székely 2002). The
definitions and properties of these metrics are described in
the Appendix. If desired by the user, this list can be ex-
panded to better suit a particular application. We note that
this default set includes metrics with different properties: the
Earth Mover Distance and Energy Distance are sensitive to
the magnitude of displacements along the i coordinate. This
is important with continuous measurements, for example per-
formed as a function of space or time, for which the deriva-
tive with respect to i carries relevant information. In contrast,
the Euclidian Distance and the KL Divergence treat the dif-
ferent pixels ofXi as different dimensions and are insensitive
to index shuffling. They provide a qualitatively different view
of the information content.

The observable signature of an underlying trend can exist
on different scales which may not be known a-priori. In order
to be generic, it is important to consider a range of scales. To
do so, we decompose each object X into a series of contigu-
ous segments whose length is given by Npix/2

l. This results
in an ensemble of segments which allows us to look at each
data object hierarchically, starting from its entirety (l = 0)
and creating a binary tree such that the deepest scale corre-
sponds to about twenty pixels. Thus, for a given metric k and
scale l, the object is split into 2l segments, and we refer to
each segment using the index m. The maximum depth or the
ways in which the data is decomposed can be modified by
the user if need be.

3.2. Finding the main sequence

Our goal is to look at the data for each metric k, scale l
and segment m, and estimate the level to which an underly-
ing trend is present. To do so, we proceed as follows. First,
for each scale l and each segment m, we first normalize each
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Algorithm 1: Sequencer pseudo-code
set list of metrics;
set list of scales;
for each metric k do

for each scale l do
set list of segments;
split objects X into m segments Xm;
normalize each segment to have a sum of 1;
for each segment m do

Dklm = distance matrix(Xm);
MSTklm = Minimum Spanning Tree(Dklm);
ηklm = aklm/bklm = elongation(MSTklm);

end
Dkl = η-weighted average of individual Dklm;
MSTkl = Minimum Spanning Tree(Dkl);
ηkl = elongation(MSTkl);

end
end
P = combined proximity matrix populated by η-weighted

edges of MSTkl;
for each pair of objects i, j do

Dcombined
ij = 1/P combined

ij ;
end
MST = Minimum Spanning Tree(D);
Sequence = Breadth First Search path(MST);

object such that the sum over its components is one. We then
extract geometrical properties of the set of graphs character-
izing similarities between all pairs of objects:
• Graph minimum spanning tree: for each metric k,

scale l and segment m, we compute a N2
obj distance matrix

Dklm which represents a fully-connected graph. We then
compute its minimum spanning tree using Kruskal’s algo-
rithm (Kruskal 1956). It gives us a set of k × l × m trees
with Nobj nodes. The key information on the presence of an
underlying trend resides in the shape of these graphs.
• Graph length: The least connected node, jLC, of the

minimum spanning tree is expected to belong to its longest
branch. To identify it, we compute the closeness centrality
of each node (Freeman & Freeman 1978) and select the one
with the smallest value. We then compute the shortest path
∆klm(jLC, j) between this node and every other node in the
minimum spanning tree. The shortest path is a unitless inte-
ger counting the minimal number of edges between the two
nodes (see the Appendix for additional details). We then de-
fine the major axis of the minimum spanning tree to be the
average of the shortest paths over all nodes:

aklm = 〈∆klm(jLC, j)〉node j . (1)

• Graph width: Each node in the graph can be as-
signed to a level q which corresponds to a unique value of
∆klm(jLC, j). That is, the shortest path between all the
nodes that are assigned to the level q and the least connected
node: ∆klm(jLC, j) = ∆q (see section 7.2 for an illustra-

tion). The width of a level q, ∆⊥klm(q), is defined as the
number of nodes that are assigned to it. We use the aver-
age of this quantity as an estimate of the average half width,
or minor axis b, of the minimum spanning tree:

bklm =
1

2
〈∆⊥klm(q)〉level q (2)

• Graph elongation: for each metric k, scale l, and seg-
mentm, we then define the elongation of the minimum span-
ning tree as its average height divided by its average width:

ηklm = elongation(Dklm) =
aklm
bklm

. (3)

This quantity can then be used to characterize the level to
which the signature of a continuous trend is apparent in a
given segment of the objects, through a given metric and on
a given scale. Importantly, by being a ratio of numbers of
edges, this parameter can be defined irrespective of the met-
ric used. It is a summary statistics describing geometrical
properties of the minimum spanning tree and, as a result,
topological properties of the data.
• Aggregation of scales and metrics: each minimum

spanning tree represents a sequence viewed through a given
metric k and scale l of a segment of the data m. The elonga-
tion ηklm of its corresponding minimum spanning tree car-
ries information on the level at which an underlying trend is
detected. We can first combine the information obtained for
all segments by creating a global distance matrix Dkl using
an elongation-weighted average of our set of minimum span-
ning trees:

Dkl = 〈ηklm . Dklm〉m . (4)

This provides us with k × l different “views” of the data,
which we can attempt to aggregate. Here we need to keep in
mind that different metrics k will result in distance matrices
Dkl with different units. To meaningfully combine informa-
tion obtained from different metrics, we will only extract the
topological information of the resulting minimum spanning
trees, as given by their edge counts, and use an elongation-
weighted average to create a “proximity” matrix:

P combined = 〈ηkl .# of edges(MST(Dkl))〉kl . (5)

We set all the elements which are not populated by the
edges of the minimum spanning trees to zero (no connec-
tion between the corresponding nodes), and the elements on
the diagonal to infinity (the proximity of a node to itself
is infinite). This then allows us to define a combined dis-
tance matrix whose elements i, j are defined as Dcombined

ij =

1/P combined
ij . This distance matrix Dcombined provides us

with a multi-scale and multi-metric characterization of the
dataset. We then compute its minimum spanning tree and
corresponding elongation.
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Figure 2. Application of the Sequencer, t-SNE, and UMAP to a simulated dataset with a clear one-dimensional sequence. The top left
panel shows examples of objects randomly selected from the simulated dataset. The top right panel shows all the objects from the dataset,
where each row represents a single object and is color-coded according to the intensity in each of its pixels. The bottom panels show the
objects, ordered according to the Sequencer, t-SNE, and UMAP respectively. It illustrates the ability of the Sequencer to focus on the scale of
interest.

• Extraction of a final sequence: in order to extract a
sequence from the minimum spanning tree of the combined
distance matrix, we must select a particular walk within the
tree, i.e. we must select the relative order in which we visit
all the nodes within the graph. As done above, we define
the starting point of the sequence using the least connected
node of the combined minimum spanning tree. From this
starting point, we walk through the graph using a Breadth
First Search (BFS; Cormen et al. 2009). If the combined
minimum spanning tree presents an appreciable elongation,
a BFS traversal is expected to define the main trend in the
dataset. Thus, we expect the main branch of the tree to rep-
resent the sequence, and secondary branches to represent the
scatter or the secondary sequence.

We point out that the addition of one or several new objects
to the dataset can be done without redoing the full process.
Once a sequence has been obtained, one can easily insert a
new object into it, by performing a straightforward neighbor
search. More details are provided in the Appendix.

3.3. Scaling considerations

The algorithm described above requires distance matrix
calculations which scale as O(N2

obj). For large datasets this
approach can be computationally demanding. A useful alter-
native is to apply the technique to a subset of the data with
Ns � N objects, build the skeleton of a sequence and then
populate it with the remaining points. This process leads to a
faster computation which allows one to process significantly
larger datasets, at the cost of obtaining only an approximate
result. A more detailed description of this method is provided
in the Appendix.

4. Performance & results

We now apply the algorithm to datasets of increasing com-
plexity to demonstrate its effectiveness as well as its advan-
tages compared to existing dimensionality reduction tech-
niques. In this paper, for simplicity, we will only consider
datasets with one dimensional objects. However, the key or-
ganizing principle based on the minimum spanning tree elon-
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Figure 3. Using the elongation parameter to identify the scale and metric that reveal a meaningful trend in a dataset. The synthetic
dataset from figure 2 ordered according to individual distance metrics and scales. The scales and resulting elongation parameters are indicated
at the top of each panel.

gation can be applied to objects in two or higher dimensions2,
but at a higher computational cost. Unless specified other-
wise, we apply the Sequencer using its default setting, i.e.
with the four distance metrics and the binary scale decompo-
sition described in section 3.

4.1. Validation with a simulated dataset

We first construct a synthetic dataset with a well-defined
trend that exists only on small scales, on top of a varying
background. We create 200 one-dimensional objects with
Npix = 400 presenting four narrow Gaussian pulses whose
positions vary continuously from one object to another to
form a clear sequence. To this we add random large-scale
fluctuations using a Gaussian process. We show the shuffled
dataset in the top panels of Figure 2, where the left panel
shows a subset of the objects in the sample, and the right
panel visualizes the full dataset. Each row represents a dif-
ferent object, and the color-coding represents the relative in-
tensity in each of its pixels. As can be seen, it is visually
difficult to identify an underlying trend in this collection of
objects. We apply the Sequencer to this dataset and show its
output in the bottom left panel. The algorithm is capable of

2 The publicly-available code can be applied to two-dimensional datasets.

detecting the overall structure in the dataset even though only
a small fraction of the pixels carries relevant information.

For comparison, we show how t-SNE and UMAP, two of
the most popular dimensionality reduction techniques, per-
form on the same simulated dataset. To obtain a sequence
using t-SNE or UMAP, we apply these techniques to embed
the input dataset into one dimension, and then rank-order the
objects according to their assigned value in this dimension.
We point out that, as mentioned in the introduction, using
these algorithms requires setting parameters. In practice, the
user typically runs such an algorithm multiple times, varying
those parameters until the “best” result is obtained. Here we
present only the best sequences obtained after optimizing the
distance metric in an automatic manner, using the elongation
of the corresponding graphs. The details of this optimization
are given in the Appendix. Clearly, t-SNE and UMAP fail
to detect the sequence in narrow pulse locations as they only
consider an object as a whole, without the ability to focus on
individual segments and understand that a well-defined trend
exists on small scales.

To illustrate how the Sequencer identifies the scale and
metric revealing a meaningful trend, in Figure 3 we present
the resulting ordering of the algorithm for each metric and
a set of scales as a function of the corresponding elongation
parameter. The most elongated minimum spanning trees are
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Figure 4. Application of the Sequencer to five randomly-ordered datasets: (a) one thousand spectra of stars, which are then ordered by
temperature, (b) one thousand spectra of quasars, which are then ordered by redshift, (c) one thousand spectra of quasars with complex broad
absorption line systems, which are then ordered by absorber type and velocity distribution, (d) a picture of food with the rows shuffled, which
is then properly reconstructed, and (e) a picture of Albert Einstein with the rows shuffled, which is then properly reconstructed. In each case,
we indicate the metrics and the scales that resulted in the most elongated minimum spanning trees, and as a result, dominated the weighted
averages in Eq 4 and 5.
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obtained using the Euclidean Distance and KL-Divergence
measured over small scales (l = 4 and l = 5). These scales
and metrics dominate the weighted averages in Eq 4 and 5
and, as a result, define the final ordering of the data.

4.2. Examples with real datasets

We now present a series of examples using one-
dimensional data. For each dataset, we first display ten ob-
jects to convey the typical level of complexity. We then show
a visualization of the entire randomly-ordered dataset, fol-
lowed by the same data this time ordered by the Sequencer.
We then display several objects from the ordered dataset. In
each case, we indicate the metrics and scales that were iden-
tified as the most informative, based on their contributions to
the minimum spanning tree elongation-weighted averages in
Eq 4 and 5.

Spectroscopic data. We start with a sample of 1, 000 spec-
tra of stars from the publicly-available Sloan Digital Sky Sur-
vey (SDSS; York et al. 2000). Each spectrum is a measure-
ment of the brightness of a star as a function of wavelength.
The dataset ordered by the Sequencer displays visible trends
in both large-scale and small-scales features. A physical in-
terpretation reveals that these continuous variations corre-
spond to a sequence in the temperature of the stars. The top
of the sequence is dominated by hot stars, which exhibit ab-
sorption lines due to hydrogen atoms, and the bottom part is
dominated by cooler stars which exhibit absorption lines due
to other, heavier, elements.

We repeat the analysis with a set of 1, 000 spectra of
quasars spanning a range of properties. This time we detect
a trend in distance (redshift): the bright and narrow features
shift continuously throughout the sequence. We point out
that, using their default settings, most dimensionality reduc-
tion techniques (e.g., PCA, t-SNE, and UMAP) are insensi-
tive to pixel shuffling and often fail to detect horizontal shifts
in the data (see section 7.1).

Our third example shows another set of 1, 000 quasar spec-
tra (Trump et al. 2006). The dark pixels correspond to flux
deficits due to absorption by gaseous clouds present in front
of the background light sources. We point out that this dataset
presents a higher level of apparent stochasticity than the pre-
vious example and is more difficult to interpret. Here, after
reordering the data we also smooth it in the y direction, us-
ing a running median filter. this step compensates for the
noise, and makes weaker trends more easily apparent. We
can observe dark regions corresponding to the absorption of
light. The algorithm reveals the existence of two distinct pop-
ulations of absorbers at the top and bottom of the ordered
dataset. This is most obvious when examining the data near
λ = 1, 500 Å. These systems are known to exhibit different
physical properties (e.g., Gibson et al. 2009 and references
therein). This example illustrates how the algorithm can nat-

urally perform a clustering task (and define sequences within
each cluster), even in the presence of a substantial amount of
noise.

Images from the natural world. In the case of simple,
highly symmetric physical objects, it is sometimes possible
to use a (physical) model and describe each object using a set
of parameters. In such a case, it might be possible to iden-
tify an underlying trend in the data by looking at a trend in
the best fit parameters. When complexity increases, quanti-
tative models based on a small number of parameters are no
longer available. The search for trends requires a data-driven
approach. To illustrate the performance of the algorithm in
a higher-complexity regime where physical modeling of the
data is out of reach, we use a set of images from the natural
world (natural images). Due to the great variety of shapes
and textures, the structural information of such images is ex-
pected to be distributed over a wide range of scales and can-
not be described by a generic model. To stay in the simpler
regime of one-dimensional objects, we randomly shuffle the
rows of images and attempt to recover the original ordering.
Two examples are shown in Figure 4. The left panel illus-
trates the complexity of each object and the lack of a simple
model to characterize them. For the two examples shown,
the algorithm is able to recover the original input. In the Ap-
pendix we present more examples using natural images and,
for comparison, show the corresponding outputs for t-SNE
and UMAP. We point out that, for representational purposes,
all re-ordered images are flipped so that they match the ex-
pected orientation, when necessary. The algorithm has obvi-
ously no information regarding the correct orientation of the
output.

Displaying the spatial variation of vectors. Displaying
spatial information, for example on a map, is often done
through the use of a colorbar, i.e. a sequence. This allows
one to display a scalar value as a function of position. If the
dynamic range is large, then techniques such as histogram
equalization can be used to map the collection of values onto
the appropriate range provided by the colorbar. If the quan-
tity to visualize is not a scalar but a vector or a distribution,
there is no systematic way to define a mapping onto a col-
orbar. However, by attempting to order these objects into a
sequence, our algorithm provides us with a generic way to
meaningfully assign a color to each vector or distribution.
The sequencer does to vectors what histogram equalization
does to scalars.

To illustrate how the algorithm can be used to display a set
of distributions on a map, we apply it to a dataset from struc-
tural seismology. Using the surface wave phase velocity at
each of about 14, 000 locations across the contiguous United
States (Olugboji et al. 2017), we extract the Love wave dis-
persion curves specifying velocities at a set of 11 periods,
which are primarily sensitive to crustal structure. To homog-
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Figure 5. Application of the Sequencer to spatial mapping. Left panels: normalized scores for Love wave phase velocities as a function of
period extracted from maps by Olugboji et al. (2017) at about 14, 000 locations beneath the contiguous United States and the same data after
ordering by the Sequencer. Right panel: locations colored by their sequenced index, revealing geographic patterns which correspond well to
physiographic provinces (black outlines, Fenneman 1928). Figure courtesy of Vedran Lekic.

enize the data, we convert the velocity at each period to its
standard score. The ordered-index obtained by the Sequencer
can be color-coded. Using the same color bar, we can create a
map which naturally shows the geographic patterns in crustal
structure, shown in Figure 5.

Prominent regions of thick sediment, such as the Willis-
ton and Denver basins and the Mississippi Embayment, are
traced out at one end of the sequence. Regions with very
contrasting crustal structure, such as the Sierra Nevada, High
Rockies, and the Snake River Plain, are traced out at the other
end of the sequence. We can also point out the correspon-
dence between the geographic patterns revealed by the Se-
quencer and physiographic provinces identified at the surface
(Fenneman 1928), shown by black lines in Figure 5. This
example illustrates how the proposed algorithm can be used
for mapping properties encoded as distributions rather than
scalar values.

5. Discussion

The elongation of the minimum spanning tree of the dis-
tance matrix graph characterizing a dataset can be used to
identify which aspects of the data, for example which met-
ric and scales, carry the signatures of an underlying simple
trend.

Applying the Sequencer algorithm to real data has already
led to discoveries. In astrophysics, it revealed a sequence in
the spectroscopic properties of Active Galactic Nuclei, which
led to a novel way to infer the mass of black holes (Baron &
Ménard 2019). In geology, it led to the detection of seismic
waves scattered by previously unrecognized 3D structures
near the core-mantle boundary (Kim et al. 2020). In each
case, the data had been publicly available for years but these
trends had not been noticed. Once a trend has been identi-

fied by the Sequencer, knowing which observational signa-
tures carry relevant information, it is possible to recover the
sequence without the aid of the algorithm.

As the use of the elongation of minimum spanning trees
allows one to identify a point of view leading to a simple
characterization of the data, it can be used more generically
to optimize the parameters of any dimensionality reduction
technique (e.g. t-SNE or UMAP, see the Appendix for addi-
tional details) in order to create a projection of the data that
can reveal the meaningful variation.

Ordering a collection of objects often allows some mean-
ing to emerge. For the datasets shown above, the ordered
indices could be assigned to physical quantities: we detected
sequences in temperature, distance, type of system, and for
natural images we recovered height or angle. Having reached
this point, it is the start of the scientific analysis requiring
specific domain knowledge. The ability of the Sequencer al-
gorithm to reveal the leading trend in a dataset by analyzing
pixel data (rather than selected features or summary statis-
tics) can therefore enable or greatly accelerate scientific dis-
coveries.

5.1. Outlier detection

As mentioned above, if two types of objects are present
in a dataset, the algorithm can identify two distinct clusters
and will present them sequentially in the final ordering of
the data. This will also apply to cases for which a minority
of objects, typically labelled as outliers, differ from the rest
of the data. In other words, outliers are typically found at
one end of the sequence. One can also imagine some objects
for which only a small fraction of the pixels differ from the
rest of the population. Such objects or set of pixels would
also be labelled as outliers. Interestingly, our approach al-
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lows us to detect them in a simple manner. Having an or-
dered sequence in hand, one can meaningfully perform an
averaging/smoothing operation along that dimension and re-
duce the amount of fluctuations not related to the detected
sequence. This has the advantage of enabling the detection
of weak trends that are not easily visible in the randomly or-
dered dataset. Then, once a smooth sequence has been de-
fined, one can look at the pixel-level differences between the
original sequence and the smooth counterpart. The statistics
of these residuals can reveal objects for which a subset of the
pixels differ from the expected underlying trend.

5.2. Limitations

A number of considerations must be kept in mind when us-
ing the Sequencer: first, the ordering operation performed by
the algorithm makes use of one definition of simplicity, based
on the elongation of a minimum spanning tree (Eq. 3). While
this always provides a well-defined ordering, it might not
necessarily lead to the trend expected from model-based con-
siderations, which are often based on a number of assump-
tions regarding features, scales, metrics, etc. If prior knowl-
edge is available, it is advised to consider limiting the data to
the region(s) where a meaningful variation is expected. Sim-
ilary, in some cases, rescaling the values of the input data
might lead to better results, especially in cases for which the
data present a high dynamic range.

The algorithm attempts to make use of information on dif-
ferent scales which, by default, are logarithmically spaced.
While this approach is meant to be generic, it is possible
to imagine cases for which this hierarchical decomposition
might not be optimal. Segmenting the data using different
strategies (for example using wavelets such that Fourier fre-
quency windows do not overlap) might lead to better results.
The user can modify the default sampling strategy if need be.

The algorithm attempts to find a trend using all fluctua-
tions present in the data. These fluctuations can be due to
useful structural information or due to random noise. With-
out a model, the algorithm cannot distinguish between them.
Noise fluctuations are partially reduced when averaging is
performed across segments of the data and scales (Eq. 4) but
do present a limitation in identifying the underlying trend. If
the dataset presents a range of noise levels, it is advised to
first apply the algorithm to a subset of the data with a higher
signal-to-noise ratio. As described above, obtaining an or-
dered sequence offers another opportunity to perform an av-
eraging operation along the sequence and further improve the
characterization of the underlying trend.

6. Conclusions

Exploratory data analysis, i.e. the search for patterns in
datasets without the benefit of guidance from theory, is an
important part of scientific research. This search is often

challenging due to the apparent complexity of the data and,
in practice, it tends to be more of an art than a science.

We present an algorithm, the Sequencer, designed to gener-
ically find a continuous sequence in a dataset. Using the
shape of graphs characterizing similarities between objects,
it can identify which aspects of the data carry the signatures
of a simple underlying trend. More specifically, given a met-
ric and a scale, it evaluates the degree to which a continuous
trend exists based on the elongation of the minimum span-
ning tree of the corresponding distance matrix. It can then
meaningfully combine this information for a collection of
metrics and scales to define a final sequence. By extracting
only graph-based geometric information, this method allows
us to generically identify aspects of the data that lead to a
simple description of the underlying variation.

Using the elongation of a minimum spanning tree as a fig-
ure of merit can be used in other contexts. For example, it
can be used to optimize the parameters of any dimensional-
ity reduction technique in order to create a projection of the
data that reveals meaningful variation.

To illustrate the power of the algorithm, we have applied
it to various datasets with one dimensional objects. It can
straightforwardly be applied to objects in two or higher di-
mensions, but at a higher computational cost. Using scientific
datasets and images with randomly-shuffled rows, we have
shown that the Sequencer can identify meaningful trends,
even if they originate only from parts of the data. In many
cases, it is capable of finding sequences that the popular t-
SNE and UMAP dimensionality reduction techniques fail to
reveal.

Informed by the geometry of graphs, the algorithm pro-
vides guidance in extracting simplicity from observations of
the complex world. As already demonstrated in astronomy
(Baron & Ménard 2019) and geology (Kim et al. 2020), the
Sequencer can discover unexpected (and sometimes simple)
trends in datasets that have already been studied by numerous
scientists. This approach to exploratory data analysis, which
does not rely on any training nor tuning of parameters, has
the potential to enable discoveries in a wide range of scien-
tific domains.

Materials and Methods

Code Availability: Implementation details and code are
available on GitHub: https://github.com/dalya/Sequencer/.
An online interface is available at http://sequencer.org.
The algorithm is implemented in PYTHON and our code re-
lies on the following packages: NUMPY (Oliphant 2006),
SCIPY (Jones et al. 2001–), MATPLOTLIB (Hunter 2007),
NETWORKX (Hagberg et al. 2008), and SCIKIT-LEARN (Pe-
dregosa et al. 2011). The testing and visualization were done
with Jupyter notebooks (Pérez & Granger 2007).

https://github.com/dalya/Sequencer/
http://sequencer.org
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7. Algorithm details

7.1. list of metrics

In order to assess the level of similarity between pairs of objects, the algorithm uses a default set of four distance metrics. We
briefly describe them here. This set can be expanded by the user if need be. As generically done, we will treat a pair of dataset
objects as two probability density distributions p(i) and q(i). An important point to consider is whether the index i encodes a
dimension — and can therefore be shuffled, or the value of a coordinate, such as distance, time, energy, etc. — in which case the
derivative with respect to i carries valuable information. Distance metrics insensitive to shuffling will not take this into account.
When the index i encodes the value of a coordinate, for simplicity, we assume that all objects in the set are sampled in the same
manner. If not, interpolation/resampling techniques need to be applied prior to using the Sequencer algorithm. The four metrics
used by default are:

• The Euclidean Distance (L2), i.e. the familiar distance between two points in an Euclidean space, is the default metric
used in many fields. In particular, it is the default metric used by the dimensionality reduction algorithms t-SNE and
UMAP. Given two objects that are represented by the vectors p(i) and q(i), L2 is given by:

L2(p, q) =

√∑
i

[
p(i)− q(i)

]2
. (6)

L2 is non-negative, symmetric, and equals to zero only when the two vectors are identical. Furthermore, L2 is insensitive
to the relative order of the values in the vector and therefore does not use any (useful) information from the derivatives with
respect to index i.

• The Kullback-Leibler Divergence (KL-divergence), also called the relative entropy, quantifies the degree of surprise
involved in seeing one distribution, given another one. It is widely used in Machine Learning to compare the similarity
between two objects. For two discrete random variables with PDFs p(i) and q(i), it is given by:

KL(p||q) =
∑
i

p(i) log
p(i)

q(i)
(7)

The KL-divergence is non-negative, and equals to zero only when the two functions are similar in every bin i. One can see
that it is asymmetric, namely KL(p||q) 6= KL(q||p), and it reaches infinity if in at least one bin i, q(i) = 0. We further
note that the KL-divergence is not sensitive to the relative order of the bins.

• The Monge-Wasserstein or Earth Mover Distance (EMD): measures a distance between two distributions from an
optimal transport point of view. Intuitively, if the distributions are interpreted as two different ways of piling up a given
amount of dirt, the EMD is the minimum work required to turn one pile of dirt into the other, where work is the amount
(mass) of dirt moved times the distance by which it moved. The EMD is widely used in computer vision, and specifically
in content-based image retrieval, as it resembles remarkably well human’s visual perception (see e.g., Rubner et al. 2000).
Interestingly, for one-dimensional distributions, the solution of the optimal transport can be obtained simply by (Ramdas
et al. 2015):

EMD(p, q) =

∫ ∞
−∞
|P (i)−Q(i)|di, (8)
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where P (i) and Q(i) are the cumulative distribution functions of the random variables p(i) and q(i). For higher dimen-
sional distributions, computing the EMD is more computationally demanding. The EMD is non-negative and symmetric.
In contrast to L2 and the KL-divergence, the EMD is sensitive to the order and the value of the indices. It can therefore
track and quantify translations and/or derivatives with respect to i. As a result, the EMD can capture certain aspects of
similarities between objects to which L2 and the KL-divergence might not be sensitive.

• The Energy Distance (ED) provides another measure of statistical distance between two probability distributions. Székely
(2002) showed that for one-dimensional real-valued random variables, p(i) and q(i), with cumulative distribution functions
P (i) and Q(i), it is equivalent to:

ED(p, q) =
(

2

∫ ∞
−∞
|P (i)−Q(i)|

)2
di. (9)

The ED is non-negative and symmetric. Similarly to the EMD, it is sensitive to the order and values of the indices. The
differences between the ED and the EMD are analogous to the differences between the L1 and L2 norms.

7.2. Graph nomenclature

Here we provide a visual support to summarize the key quantities used by the algorithm and the corresponding terminology
introduced in section 3. Figure 6 shows the example of a minimum spanning tree, where the nodes are color-coded according
to their centrality measure. The least connected node of this graph is indicated in the bottom left of the figure. It provides the
starting point to traverse the graph using a Bread First Search (BFS) walk, i.e. along the longest branch of the graph and scanning
each branch along the way. The nodes are ordered in levels according to their distance (in units of edges) from the starting point
(marked with numerical labels in the figure). These levels are used to estimate the average width and height of the tree, which are
then used to estimate the elongation of the minimum spanning tree. The graph length (Eq. 1) and width (Eq. 2) are also illustrated
in the figure.

graph length

graph 

width

least-connected node

1 2 3 4 5
6

6

6 7

7

8

0

Node levels:

Figure 6. Illustration of various graph minimum spanning tree properties used by the algorithm.

7.3. Faster computation for large datasets

The algorithm described in section 3 requires distance matrix calculations which scale as O(N2). For large datasets this
approach can become too computationally demanding. A useful alternative is to first apply the technique to a subset of the data,
build the skeleton of a sequence and then populate it with the remaining points. This process leads to a faster computation and
enables the analysis of much larger datasets. It can be implemented as follows: for a dataset with N objects, we first select a
subset with Ns � N objects for which the distance matrix calculations are computationally feasible. This provides us with a
first sequence.

• growing sequence: given a selected sequence, the algorithm selects a fraction fA of objects distributed uniformly. We
refer to them as anchor points.

• adding new objects: to populate the growing sequence with a new object i, we first perform a low-resolution search where
we measure the distance between this object to the NA = fANs anchor points and find the two nearest neighbors. We
then perform a high-resolution search computing distances between object i and all the nodes from the evolving sequence



13

located between the two nearest anchor points. These distances are populated into the proximity matrix, with a weight
that corresponds to the aggregated minimum spanning tree elongation for a given scale (Eq. 5). This proximity matrix
is converted into a distance matrix, after which a minimum spanning tree is constructed. We note that, this part of the
calculation involves very sparse matrices as only a very small fraction of nodes and edges are considered. This process
of populating the growing sequence can be done in parallel for a group of objects. Finally, the updated growing sequence
is obtained by a Breadth First Search traversal of the minimum spanning tree. This concludes a single iteration of the
population phase.

• Updated sequence: after having populated the growing sequence with a group of new objects, we obtain an updated
sequence. We can then repeat the process with the remaining points. Here we point out that, at each iteration, the number
of anchor points, defined to be a fraction fA of the size of the coarse sequence, grows linearly with the size of the growing
sequence. In order to ensure convergence, the number of objects that are populated in every iteration must be smaller than
the number of anchor points.

This process avoids a full O(N2) calculation and allows one to search for sequences in large datasets in a more efficient manner.
This is done at the cost of obtaining only an approximate result for which the accuracy depends on the choice of initial subset
size Ns and the fraction fA of anchor points to use.

8. Minimum Spanning Tree elongation as a figure of merit

One of the key ideas presented in this work is that it is possible to quantify the level to which a trend is detectable in a dataset.
One can do so by using the elongation of the minimum spanning tree of a distance matrix characterizing this dataset or a collection
of distance matrices characterizing various aspects of the dataset. In order to use this method generically and, for example, to
compare performances with datasets of different sizes, we can use a normalized elongation parameter:

η′ = η/N (10)

where N is the number of objects in a dataset. This normalized elongation ranges from 1/N for a random graph to 1 for a perfect
sequence. This normalized elongation parameter can be computed for any dataset and for the output of any dimensionality
reduction technique. It can thus serve as a figure of merit to quantify the level to which a trend is detectable. It can therefore be
used to optimize the parameters of a given algorithm and/or select which technique performs better in order to reveal a continuous
trend in a dataset. This procedure could for example be used in combination with the t-SNE and UMAP algorithm to select their
internal parameters, metric and possibly the scales of the data leading to the embedding revealing the “best” sequence.

8.1. Comparing the Sequencer to t-SNE and UMAP

In order to compare the performance of the Sequencer to that of t-SNE or UMAP,
we need to introduce a procedure to automatically select their parameters leading to the “best” sequence but without using the

full machinery of the Sequencer. To do so, we proceed as follows: given a set of hyper-parameters, each of these techniques can
be applied to embed a collection of objects or vectors into a one-dimensional space and naturally obtained an ordered list. The
question then is whether this list reveals a meaningful trend in the dataset. To address this, it is unfortunately not possible to
directly use the elongation parameter in that embedding as, by definition, the corresponding manifold only has one dimension, so
η′ is always one. To meaningfully estimate a corresponding elongation parameter, we need to have access to more information.
To do so, we use these embedding techniques to obtain projections in two dimensions. In the corresponding spaces, we can
now meaningfully estimate the elongation of these manifolds and use this information as a figure of merit to assess the level to
which a sequence is found. Here, we point out that the elongation parameter estimated in this manner can serve as a figure of
merit only when the two-dimensional embedding does not strongly depart from a one-dimensional manifold. It is meaningfully
defined only when the two-dimensional distribution of objects can be simply represented by a major and minor axis. In cases
involving clusters and/or outliers in the two-dimensional projection, the elongation parameter no longer informs on the quality of
an expected sequence.

As described above, we can then use the elongation parameter as a figure of merit to find the metric and/or hyper-parameters
that produce the most elongated sequence or, in other words, the trend presenting the most elongated one-dimensional manifold,
i.e. the highest degree of continuity. To illustrate this, we apply t-SNE and UMAP to two images for which the rows have been
randomly shuffled. In Figure 7 we show how varying the hyper-parameters of each technique affects the quality of the resulting
embedding and how optimizing for the largest value of the elongation parameter naturally leads to the recovery of the original
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Figure 7. Using the elongation parameter as a figure of merit to optimize the hyper-parameters and/or metric of t-SNE and UMAP.
These two embedding techniques are applied to randomly shuffled rows of images. The highest minimum spanning tree elongations naturally
selects the correct ordering of the objects within the set.

image. We also point out that optimizing the hyper-parameters of these techniques does not always allow to recover the original
image.

Having introduced the normalized elongation parameter to (i) automatically optimize the hyper-parameters and/or metrics of
t-SNE/UMAP and (ii) compare the resulting embeddings of different techniques, we now show that the Sequencer algorithm can
identify an underlying trend in cases where both t-SNE and UMAP do not. This is similar to the example shown in Section 8
but, this time, we are using real data rather than artificially generated distributions. To illustrate this point, we select images
from the COCO dataset (Lin et al. 2014). As done previously, we treat the rows as a collection of ordered objects whose order
is randomly shuffled. We use them as inputs to the Sequencer, t-SNE and UMAP, and in each case we attempt to recover the
original ordering using the procedure described above. For t-SNE, we consider the four distance metrics and the hyper parameters:
learning rate=[10, 50, 100, 150] and perplexity=[10, 50, 70, 100]. For UMAP, we consider the same
distance metrics and the hyper-parameters: n neighbour=[10, 50, 100, 150] and min dist=[0.1, 0.2, 0.5,
0.8]. We note that this coarse sampling of the hyper parameters of these two techniques appears to be enough for this type of
data. A higher resolution optimization of the parameters does not provide better results.

The results are shown in Figure 8. For each input shuffled image, we present the output of the Sequencer, as well as the ”best”
outputs obtained with t-SNE and UMAP. In all cases, the elongation-based optimization leads to meaningful segments of the
original images. Interestingly, in a number of cases, the Sequencer outperforms the best possible outputs obtained with t-SNE
and UMAP. As described in section 4.1, this is due to the ability of the Sequencer to look for a global trend using multiple metrics
and a range of scales.
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